全国统一热线 :0755-27474071
传真 :0755-29976316
产品展示 专利证书 新闻中心
技术交流
  天线理论
  工程运用
  技术探讨

应用于WLAN的宽频带天线设计[图]
时间:2013/1/23 11:38:02

 

为了设计出可以覆盖无线局域网WLAN2.4GHz5.2GHz5.8GHz三个频带的天线,采用一种结构简单的宽带双频共面波导馈电的单极子天线。该天线由一个平面倒L形和一个倒U形贴片连接构成,实际加工制作了一个天线并且实测了S11参数,结果表明该天线具有两个独立的谐振模式,并且在应用范围内具有良好的阻抗匹配特性。 

0 引言

无线局域网WLAN(Wireless Local Area Network)是利用无线技术实现快速接入以太网,是无线通信技术与计算机网络相结合的产物,是对有线局域网的一种补充和扩展。和有线网络相比,WLAN具有可移动性、灵活性、更迅速、费用低、网络可靠性高等优势。近年来,随着IEEE 802.11a(5.155.35GHz5.7255.825GHz)IEEE 802.11b/g(2.42.483 5GHz)标准的提出,WLAN得到了迅猛发展.与此同时对WLAN天线的要求也越来越高,要求其体积小、重量轻、生产加工便捷、天线成本低廉,同时在功 能上要求使用频宽较宽以及有双频性能以同时达到IEEE 802.11a/b/g标准要求。所以,近年来对小型化的多频段WLAN天线的研究大量涌现。

在平面单极子天线中,有一种倒L形平面单极子天线,国际上已经对此进行了研究,在理论模拟仿真上,可以同时满足 IEEE802.11a/b/g标准要求,其设计形式更简单,在满足带宽的要求上,体积还可进一步的缩小。所以,本文将在原来的微带馈电的倒L平面单极子 天线的基础上,改变其馈电的形式,研制出一种共面波导馈电的倒L-U平面单极子天线。仿真和实测表明该天线在WLAN的三个频带范围内均具有很好的阻抗匹 配和辐射特性。 

1 L-U平面单极子天线的设计 

1.1 天线分析与设计

WLAN天线形式有很多种,比如微带天线,八木天线、平面单极子天线等等。选择平面单极子天线的原因是,相对于微带天 线,其带宽大;相对于八木天线,其体积小且容易共形。平面单极子天线与微带天线的结构不同在于:在金属辐射贴片对应的介质衬底另一侧的金属地板被去除,也 就是采用了部分地板结构。微带天线的带宽低,因为其Q值大,即在辐射板与地板之间储存了大量的能量。平面单极子天线的辐射板的对应地板去除了,加大了辐射 电阻,辐射出去的能量也大大的增加,Q值变小,带宽增大。选择共面波导馈电的形式,将地板与辐射板共面,使得带宽又增大了,而且结构更紧凑。但是由于天线 与共面波导之间缺少有效的隔离,造成天线性能受共面波导尺寸的影响较严重。

本文所设计的平面波导馈电(CPW-feed)的单极子倒L-L形天线如图1所示,由于Length1的长边过于长,使 整个板子的面积较大,本文通过曲流技术中的折叠技术,将Length1的长边又进行了横向折叠,如图2所示,即共面波导馈电(CPW-feed)的平面单 极子倒L-U形天线。折叠后的尺寸较之原先有了较大缩减。 

1.2 天线仿真结果分析

 

应用Ansoft HFSS仿真软件,对图2所示的天线进行仿真。根据文献的设计经验,馈线宽度选择为3mm,介质板采用了最为常用的FR-4,其相对介电常数为4.4,厚 度为1.6mm。另外应用软件ApPCAD2.0,计算出共面波导馈电结构的特性阻抗为50Ω时,馈线与地板之间的缝隙宽度约为0.6mm

天线电流传输方向的长度可以通过公式估算,本文所设计的天线需满足覆盖两个频段的要求,其中一个频段覆盖2.4GHz, 另一个频段覆盖5.2GHz5.8GHz。因此本文选择两个中心谐振点频率分别为2.45GHz5.25GHz。根据计算可知对应于2.45GHz Length1= 29.15mm,对应于5.25GHzLength2=13.61mm。由图2可知,Length1=W2+L2+L5/2应约等于 29.15mmLength2=L4+L5/2需略大于13.61mm。为了使整体结构紧凑、小型化、宽带化,本文将对天线结构中的个别参数对天线性能 的影响做仿真分析并加以比较。

本文通过分析地板宽度W7、辐射贴片处的横条宽度W3、辐射贴片与地板之间的缝隙W4U形片的W2长度以及L形片的 L4长度等几个参数的变化对天线S11频率特性的影响,经过一系列的优化对比,得出以下数据,如表1所示。优化后仿真所得的天线的仿真性能参数 S11VSWR以及远区场方向图如图3~图7所示。






由上述可知,该共面波导馈电的平面单极子倒L-U天线具有高阻抗带宽、小型化的显著特点,其在-10dB处的阻抗带宽有 两段,分别为2.362.58GHz3.625.96GHz,前一段的相对带宽为8.9%,后一段的相对带宽为48.9%,覆盖了WLAN的工作频带。 

2 天线的制作与测试结果

天线实物如图8所示。

参数S11仿真与实测结果对比图,如图9所示,可以看出,实测结果与仿真结果对比在高频段有较大的偏差,低频段较为吻合。

 

3 误差分析

由实验测试结果可以看出,实际制作的WLAN宽频带天线的回波损耗与HFSS仿真软件的模拟结果存在一定误差。以下从五个方面分析造成误差的原因。

(1)对于介电常数而言,高介电常数基板的关键参数是εr,因此准确的测定εr,是非常必要的;制作时所选用的基板的介 电常数较低,影响其谐振频率的关键性参量是天线辐射贴片Length1Length2的长度误差△L。而用共面波导馈电的方式(CPW-feed),地 板大小的误差也是影响谐振点和带宽的关键参量。在使用HFSS仿真时发现,天线贴片几何尺寸的微小变化引起了仿真结果比较大的变化。所以,制作天线过程中 贴片的微小误差,对结果会产生较为严重的影响。

(2)SMA接头处焊接不良、接口处有能量损耗等因素也是带来误差的原因。在测过多个焊接好SMA接头的天线时发现,测得的结果总会有一定的不同。

(3)阻抗不匹配。由于共面波导馈电端口的特性阻抗受介电常数和贴片厚度影响,仿真时,贴片厚度是0.1mm,计算得到的特性阻抗为50.2Ω,而实际贴片厚为0.035mm,计算得到的特性阻抗为56.1Ω,与SMA接口50Ω不完全匹配。

(4)从软件的角度来分析,基于数值分析方法的HFSS软件本身只能提供数值解,且受设定的运算精度的限制,仿真结果与实际情况间必然存在误差,这种误差是不可避免的。

(5)实验室测量方法、仪器、环境也是带来误差的原因。在测天线时发现,当天线放在不同的位置,测得的数据不一样;当用两个不同的分析仪测量时,结果也不一样;在微波暗室中,墙壁吸波不完全,同时也不能完全隔绝外界杂波。 

4 结语

本文根据常见的倒L平面单极子天线进行改进,设计了一款共面波导馈电(CPW-feed)的平面单极子倒L-U形天线。 并通过仿真设计其总体尺寸为22mm×35mm,达到小型化的目的。根据仿真,天线-10dB阻抗带宽为2.362.58GHz,相对带宽为8.9% 3.625.96GHz,相对带宽为48.9%,满足了WLAN的频段要求。

原文来自tech.c114.net/164/a664100.html

【上一篇】: 五大无线技术之比较
【下一篇】: MID天线之我见
 
首页 | 公司简介 | 技术交流 | 联系我们
版权所有 深圳市南斗星科技有限公司 粤ICP备09221720号 网页设计:合优网络